Abstract

Although postpartum aggression is primarily studied in laboratory mice and rats, it is unclear how the two species compare in terms of the factors associated with peak levels of aggressive behavior. Using the same experimental protocol, we assessed the relative effect of intruder sex and time since parturition on the frequency of maternal aggression in Long-Evans rats and CFW mice. Females were studied for 2 consecutive cycles of pregnancy and lactation. During the first lactation, aggression was tested 2 times per week for 3 weeks in order to select animals that attacked at least once. During the second lactation, both pup care and aggressive behavior were assessed in detail. Testing occurred twice in each lactation week, with postpartum days 1–7, 8–14, and 15–21 considered weeks 1, 2, and 3, respectively. Maternal behavior towards 3 pups was observed for 5 minutes, followed by a confrontation with an intruder. Lactating females encountered female intruders once per week, and male intruders in the alternate weekly test. The same behaviors were measured in the 2 species, except for the tail rattle exhibited by mice and the aggressive posture shown by rats. Lactating rats and mice show similar decreases in pup care behavior as lactation progresses in time; yet the factors associated with peak levels of aggression differ between species. In Long-Evans rats, female intruders receive more attacks, threats, and aggressive postures than males. Frequency of attack bite and sideways threat declines in each passing week of lactation. Lactating mice are more aggressive toward male intruders throughout the lactation period. Mice still attack and threaten during the third week of lactation, but less often in comparison to the first week. Therefore, peak levels of aggression vary in mice and rats both as a function of intruder sex and lactation week.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.