Abstract

The corrosion behaviors of a low silicon and aluminum 430 stainless steel with and without ceria surface treatment were investigated in a simulated coal syngas at 800 {degree sign}C and in air. Thermodynamic calculations were made to predict carbon activities for the coal syngas as a function of temperature. At 800 {degree sign}C, carbon activity is ~1.1, which indicates that carbon that forms could diffuse into the steel and induce carbon corrosion, e.g. carburization and metal dusting. The surface morphology was investigated with X-ray diffraction and scanning electron microscopy. In coal gas, the scale formed on bare steel consisted of Mn1.5Cr1.5O4 and Cr2O3 and on ceria treated steel (Fe, Mn)O, FeCr2O4, Cr2O3, and CeCrO3. Both materials underwent carburization, but not metal dusting. The results of oxidation in air using a thermogravimetric apparatus confirmed that the 430 sample was less resistant to oxidation than the 430 treated with ceria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call