Abstract

Rapid developments in the electric industry have promoted an increasing demand for lithium resources. Lithium in salt lake brines has emerged as the main source for industrial lithium extraction, owing to its low cost and extensive reserves. The effective separation of Mg2+ and Li+ is critical to achieving high recovery efficiency and purity of the final lithium product. This paper summarizes Mg2+/Li+ separation materials and methods in the field of lithium recovery from salt lake brines. The review begins with an introduction to the global distribution and demand for lithium resources, followed by a description of the materials used in various separation techniques, including precipitation, adsorption, solvent extraction, nanofiltration membrane, electrodialysis, and electrochemical methods. A comparison, analysis, and outlook of such methods are comprehensively discussed in terms of principles, mechanisms, synthesis/operation, development, and industrial applications. We conclude with a presentation of challenges and insights into the future directions of lithium extraction from salt lake brines. A combination of the advantages of various materials is the most logical step toward developing novel methods for extracting lithium from brines with high separation selectivity, stability, low cost, and environmentally friendly characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.