Abstract

Replacement surgery of hip joint consists of the substitution of the joint with an implant able to recreate the articulation functionality. This article aims to review the current state of the art of the biomaterials used for hip implants. Hip implants can be realized with different combination of materials, such as metals, ceramics and polymers. In this review, we analyze, from international literature, the specific characteristics required for biomaterials used in hip joint arthroplasty, i.e., being biocompatible, resisting heavy stress, opposing low frictional forces to sliding and having a low wear rate. A commentary on the evolution and actual existing hip prostheses is proposed. We analyzed the scientific literature, collecting information on the material behavior and the human-body response to it. Particular attention has been given to the tribological behavior of the biomaterials, as friction and wear have been key aspects to improve as hip implants evolve. After more than 50 years of evolution, in term of designs and materials, the actual wear rate of the most common implants is low, allowing us to sensibly reduce the risk related to the widespread debris distribution in the human body.

Highlights

  • The hip is one of the most important joints that support our body, having the task of joining the femurs with the pelvis

  • This paper aims to exhaustively review the state of the art of the biomaterials used as hip joint medical devices

  • We present an overall evaluation of biomaterials for THA

Read more

Summary

Introduction

The hip is one of the most important joints that support our body, having the task of joining the femurs with the pelvis. The hip joint is subjected to high daily stresses, having to bear the weight of the upper part of the body. The surface of the femoral head, due to arthritis, can undergo some alterations, becoming porous and causing damage to the entire joint complex. Osteoarthritis of the hip, as a degenerative pathology, involves irreversible damage due to which in many cases it is necessary to resort to the substitution of the compromised joint with an artificial one. A hip prosthesis is an artificial joint designed to perform the same functions as the natural one and which is surgically implanted.

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call