Abstract

In order to provide basic information on corrosion resistance to the designers and users of geothermal plants different metallic materials including duplex and austenitic stainless steels as well as a nickel alloy have been evaluated in artificial geothermal fluids simulating the conditions in some locations with geothermal potential in Germany as well as two sites in Indonesia. By electrochemical and long-term exposure tests at 100 °C and 150 °C the suitability of low alloyed steel UNS G41300, stainless steels UNS S31603 UNS S31803, UNS S32760, super austenitic steel UNS N08031 and nickel based alloy UNS N06059 was investigated in these geothermal fluids, using critical potentials and corrosion rates. In high-saline environments the crevice corrosion turned out to be the determining mechanism. The nickel based alloy shows excellent corrosion resistance against pitting corrosion. Excluding its high cost, it is very good to be used in the construction of geothermal facilities having highly saline brines. Stainless and duplex steels exhibit a limited corrosion resistance concerning pitting and crevice corrosion. Therefore they are not suitable for highly saline brines. The super austenite UNS N08031 showed a temperature depending behavior. In non-saline environments the low-alloyed steel UNS G41300 (beside of the higher alloyed materials) could be employed as a constructional material for the geothermal power plant, as long as a sufficient wall thickness of the material is considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call