Abstract

Materials engineering plays vital role in Solid Oxide Fuel Cell (SOFC) technology. For example, engineered porous materials are needed to support delicate electrolyte membranes, where mechanical integrity and effective diffusivity to fuel gases is critical; and to construct fuel cell electrodes, where an optimum combination of ionic conductivity, electronic conductivity, porosity and catalyst distribution is critical. Material engineering also underpins selection of cell designs and material systems to minimise failure, particularly during transient operations such as thermal cycling. The paper will address these issues, making reference to high temperature (>900C) SOFCs for integration with gas turbines, and metal supported SOFCs designed to operate at temperatures of 500-600C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.