Abstract
AbstractLong channel lateral programmable metallization cell (PMC) devices, in which a metal electrodeposit is formed on a solid electrolyte between two coplanar electrodes several microns apart, have a variety of applications beyond standard microelectronics. Whereas fast electrodeposit growth over considerable distances can be achieved using high ion mobility chalcogenide electrolytes, the use of more foundry‐friendly materials, including copper‐doped transition metal oxides, leads to extremely low electrodeposit growth rates due to their low ion mobility and high resistivity. In this paper, a material system comprising a Cu2O/CuWO3 bilayer formed by low temperature oxidation of Cu on WO3 is examined. The Cu2O overlayer provides a low resistance parallel path for electrons, allowing electrodeposition to occur along the entire length of the device, thereby increasing the rate at which the electrodeposit fills the channel. A study of devices prepared under different conditions, resulting in different copper oxide thicknesses and copper concentrations in the layers, shows the influence of processing conditions on material composition, activation energy for current transport, electrodeposit morphology, and electrical characteristics. It is demonstrated that a very wide range of operating conditions is possible, including the bridging of 14 μm long channels in under 3 s using 2 V bias.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.