Abstract

Currently, the pyrolysis of hydrocarbons for the production of light olefins is almost exclusively carried out in steam crackers operating around 900–1000°C. However, cracking hydrocarbons at much higher temperature results in high selectivity to acetylene, which can be converted into many petrochemical products including ethylene. The desired hydropyrolysis reaction from hydrocarbons to acetylene can be realized in a reverse-flow reactor at very high temperatures (>1700°C) in a scalable manner. The reactor elements include ceramic components that are placed in the hottest regions of the reactor and must withstand a temperature that is in the range of 1500–2000°C. In addition, the temperature rises and falls with the reverse-flow cycle; a fluctuation that could be as high as 100–500°C over a period of several seconds. Moreover, the materials in the hot zone are exposed alternately to a regeneration (heat addition) step that is mildly oxidizing, and a pyrolysis (cracking) step that is strongly reducing with a correspondingly high carbon activity. This article addresses the thermodynamic stability of selected ceramic materials based on alumina, zirconia, and yttria for such an application. Results from laboratory tests involving the exposure of these ceramic materials to simulated process conditions followed by their microstructural characterization are compared with expectations from thermodynamic predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.