Abstract

Redox flow batteries (RFBs) are propitious stationary energy storage technologies with exceptional scalability and flexibility to improve the stability, efficiency, and sustainability of our power grid. The redox-active materials are the key component for RFBs with which to achieve high energy density and good cyclability. Traditional inorganic-based materials encounter critical technical and economic limitations such as low solubility, inferior electrochemical activity, and high cost. Redox-active organic materials (ROMs) are promising alternative “green” candidates to push the boundaries of energy storage because of the significant advantages of molecular diversity, structural tailorability, and natural abundance. Here, the recent development of a variety of ROMs and associated battery designs in both aqueous and nonaqueous electrolytes are reviewed. The critical challenges and potential research opportunities for developing practically relevant organic flow batteries are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call