Abstract

AbstractBenefiting from the high capacity of Zn metal anodes and intrinsic safety of aqueous electrolytes, rechargeable Zn ion batteries (ZIBs) show promising application in the post‐lithium‐ion period, exhibiting good safety, low cost, and high energy density. However, its commercialization still faces problems with low Coulombic efficiency and unsatisfied cycling performance due to the poor Zn/Zn2+ reversibility that occurred on the Zn anode. To improve the stability of the Zn anode, optimizing the Zn deposition behavior is an efficient way, which can enhance the subsequent striping efficiency and limit the dendrite growth. The Zn deposition is a controlled kinetics‐diffusion joint process that is affected by various factors, such as the interaction between Zn2+ ions and Zn anodes, ion concentration gradient, and current distribution. In this review, from an electrochemical perspective, we first overview the factors affecting the Zn deposition behavior and summarize the modification principles. Subsequently, strategies proposed for interfacial modification and 3D structural design as well as the corresponding mechanisms are summarized. Finally, the existing challenges, perspectives on further development direction, and outlook for practical applications of ZIBs are proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call