Abstract

Silicon-based power devices are reaching their fundamental performance limit. The use of wide-bandgap semiconductors with superior material properties over silicon offers the potential for power electronic systems with much higher power densities and higher conversion efficiency. GaN, with a high critical electric field and carrier mobility, is considered one of the most promising candidates for future high-power, high frequency and high temperature applications. High voltage transistors and diodes based on both lateral and vertical structures are of great interest for future power electronics. Particularly, vertical GaN power devices have recently attracted increasing attention due to their many unique properties. This paper reviews recent progress and key remaining challenges towards the development of high-performance vertical GaN transistors and diodes with emphasis on the materials and processing issues related to each device architecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.