Abstract

Recently, significant efforts have been directed at overcoming the limitations of conventional rigid optoelectronic devices, particularly their poor mechanical stability under bending, folding, and stretching deformations. One of major approaches for rendering optoelectronic devices mechanically deformable is to replace the conventional electronic/optoelectronic materials with functional nanomaterials or organic materials that are intrinsically flexible/stretchable. Further, advanced device designs and unconventional fabrication methods have also contributed to the development of soft optoelectronic devices. Accordingly, new devices such as bio-inspired curved image sensors, wearable light emitting devices, and deformable bio-integrated optoelectronic devices have been developed. In this review, recent progress in the development of soft optoelectronic materials and devices is outlined. First, various materials such as nanomaterials, organic materials, and their hybrids that are suitable for developing deformable photodetectors, are presented. Then, the nanomaterials and organic/polymeric materials that are applicable in deformable light-emitting diodes are described. Finally, representative system-level applications of flexible and stretchable photodetectors and light-emitting diodes are reviewed, and future prospects are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.