Abstract

The performance of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC) is critically dependent on the selection of materials and optimization of individual components. A conventional high-temperature membrane electrode assembly (HT-MEA) primarily consists of a polybenzimidazole (PBI)-type membrane containing phosphoric acid and two gas diffusion electrodes (GDE), the anode and the cathode, attached to the two surfaces of the membrane. This review article provides a survey on the materials implemented in state-of-the-art HT-MEAs. These materials must meet extremely demanding requirements because of the severe operating conditions of HT-PEMFCs. They need to be electrochemically and thermally stable in highly acidic environment. The polymer membranes should exhibit high proton conductivity in low-hydration and even anhydrous states. Of special concern for phosphoric-acid-doped PBI-type membranes is the acid loss and management during operation. The slow oxygen reduction reaction in HT-PEMFCs remains a challenge. Phosphoric acid tends to adsorb onto the surface of the platinum catalyst and therefore hampers the reaction kinetics. Additionally, the binder material plays a key role in regulating the hydrophobicity and hydrophilicity of the catalyst layer. Subsequently, the binder controls the electrode–membrane interface that establishes the triple phase boundary between proton conductive electrolyte, electron conductive catalyst, and reactant gases. Moreover, the elevated operating temperatures promote carbon corrosion and therefore degrade the integrity of the catalyst support. These are only some examples how materials properties affect the stability and performance of HT-PEMFCs. For this reason, materials characterization techniques for HT-PEMFCs, either in situ or ex situ, are highly beneficial. Significant progress has recently been made in this field, which enables us to gain a better understanding of underlying processes occurring during fuel cell operation. Various novel tools for characterizing and diagnosing HT-PEMFCs and key components are presented in this review, including FTIR and Raman spectroscopy, confocal Raman microscopy, synchrotron X-ray imaging, X-ray microtomography, and atomic force microscopy.

Highlights

  • Fuel cells are among the enabling technologies toward a safe, reliable, and sustainable energy solution

  • We present an overview of advanced analytical tools, including novel imaging and spectroscopic techniques, which had been used to characterize HT-PEMFC materials either in situ or ex situ

  • We focus mainly on fuel cells based on phosphoric-acid-doped PBI membranes as these are the closest to commercialization

Read more

Summary

Introduction

Fuel cells are among the enabling technologies toward a safe, reliable, and sustainable energy solution. The lack of clean hydrogen sources and a sizable hydrogen infrastructure limits the fuel-cell applications today Due to their elevated operating temperatures, between 150 and 180 °C, HT-PEMFCs can tolerate fuel contaminants such as carbon monoxide (CO) and hydrogen sulfide (H2S) without significant loss of performance [1,2,3,4,5]. It is an appealing concept to couple a HT-PEMFC stack directly with a fuel processor [6,7] These so-called auxiliary power units (APU) use the fossil fuel resources more efficiently and help to reduce the emission of CO2. This might be a good strategy for the wide deployment of fuel cells before the hydrogen infrastructure is established. The efficiency of the fuel cell system can be further increased by reusing the exhaust heat produced during electrical power generation

Objectives
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.