Abstract

This paper investigates the effect of ultrasonic tip-sample vibration in regulating the fabricated feature depth and reducing machining force in ultrasonic vibration-assisted nanomachining with an atomic force microscope (AFM). Nanopatterns on aluminum and polymethyl methacrylate (PMMA) substrates are fabricated by the ultrasonic vibration-assisted nanomachining approach. It is demonstrated that using a small set-point force and the same vibration amplitude for machining PMMA and aluminum, nearly the same feature depth is achieved. The fabrication depth is mainly controlled by the amplitude of the tip-sample z-vibration, and is insensitive to sample materials. A theoretical analysis of the sample contact stiffness and dynamic stiffness of the cantilever is used to explain the observed material-insensitive depth regulation by ultrasonic tip-sample vibration. The ultrasonic vibration also effectively reduces the normal force and friction during nanomachining. On both PMMA and aluminum samples, experimental results demonstrate significant reduction in set-point force and lateral friction force in ultrasonic vibration-assisted nanomachining compared with nanomachining without ultrasonic z-vibration. Smaller tip wear is observed in ultrasonic vibration-assisted nanomachining for the fabrication of PMMA samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.