Abstract

Arterial occlusion by thrombosis is the immediate cause of some strokes, heart attacks, and peripheral artery disease. Most prior studies assume that coagulation creates the thrombus. However, a contradiction arises as whole blood (WB) clots from coagulation are too weak to stop arterial blood pressures (> 150 mmHg). We measure the material mechanical properties of elasticity and ultimate strength for Shear-Induced Platelet Aggregation (SIPA) type clots, that form under stenotic arterial hemodynamics in comparison with coagulation clots. The ultimate strength of SIPA clots averaged 4.6 ± 1.3 kPa, while WB coagulation clots had a strength of 0.63 ± 0.3 kPa (p < 0.05). The elastic modulus of SIPA clots was 3.8 ± 1.5 kPa at 1 Hz and 0.5 mm displacement, or 2.8 times higher than WB coagulation clots (1.3 ± 1.2 kPa, p < 0.0001). This study shows that the SIPA thrombi, formed quickly under high shear hemodynamics, is seven-fold stronger and three-fold stiffer compared to WB coagulation clots. A force balance calculation shows a SIPA clot has the strength to resist arterial pressure with a short length of less than 2 mm, consistent with coronary pathology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call