Abstract

Harnessing hot electrons and holes resulting from the decay of localized surface plasmons in nanomaterials has recently led to new devices for photovoltaics, photocatalysis, and optoelectronics. Properties of hot carriers are highly tunable, and in this work, we investigate their dependence on the material, size, and environment of spherical metallic nanoparticles. In particular, we carry out theoretical calculations of hot carrier generation rates and energy distributions for six different plasmonic materials (Na, K, Al, Cu, Ag, and Au). The plasmon decay into hot electron–hole pairs is described via Fermi’s golden rule using the quasistatic approximation for optical properties and a spherical well potential for the electronic structure. We present results for nanoparticles with diameters up to 40 nm, which are embedded in different dielectric media. We find that small nanoparticles with diameters of 16 nm or less in media with large dielectric constants produce most hot carriers. Among the different mat...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.