Abstract

Presently, energy harvesting from natural sources is one of the hot-spot areas for actuating the micropower devices used in electronics and instrumentation. The performance and potential of energy harvesting systems depend on the geometry of the structure and properties of the materials employed. The present work focuses on the effect of piezoelectric materials on the structural and electrical characteristics. A three-dimensional finite element analysis is implemented to investigate the power output from a vibrating cantilever beam with three different types of piezoelectric materials namely lead zirconate titanate (PZT-5H), polyvinylidene fluoride (PVDF) and zinc oxide (ZnO). It was observed that the power output strongly depends on the material properties and geometric parameters of piezoelectric patches mounted on the cantilever substrate. To this end, the area and thickness ratio of the laminated beams are varied to understand its effect on the natural frequencies and the electric power output. The output energy increases with an increase in the area of the piezoelectric patch. A similar trend is observed in the case of the thickness ratio. PZT-5H has shown more energy harvesting potential for the same geometrical configurations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.