Abstract

Nanocomposite ceramics possess beneficial mechanical and physical characteristics over traditional engineering ceramics; however, there is currently no effective method of machining nanocomposites ceramics. This paper proposes a new ultrasound-aided electrolytic in-process dressing machining method. There are many factors influencing the material removal rate in the ultrasound-aided electrolytic in-process dressing grinding. In order to optimize the processing parameters and guide practice, the material removal models are developed to simulate the material removal process based on ductile failure and brittle rupture models, and the influence of grinding parameters on material removal rates is obtained. With the model, the influence of grinding parameters on the material removal rate is analyzed by MATLAB. The analysis results are verified by the ultrasound-aided electrolytic in-process dressing grinding test: the material removal rate increases with the increase of grinding parameters; depth of cut significantly improves material removal rate, followed by axial feeding speed, wheel speed, and workpiece speed that are less important; considering the comprehensive processing effect, depth of cut is the key parameter with the optimal setting at about 3.73 µm. The ultrasound-aided electrolytic in-process dressing grinding test not only proves the reliability of the model, but also proves that the ultrasound-aided electrolytic in-process dressing grinding can improve the ductile machining effect, when compared to electrolytic in-process dressing grinding, which is suitable for mirror machining of the nanocomposite materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.