Abstract

Optical and medical industries are demanding a large variety of optical elements exhibiting complex geometries and multitude opto-functional areas in the range of a few millimeters [1]. Therefore, mold inserts made of steel or carbides must be finished by polishing for the replication of glass and plastic lenses [2]. For polishing theses complex components in the shape of localized cavities or grooves the application of rotating polishing pads is very limited. Established polishing processes are not applicable, so state of the art is a time consuming and therefore expensive polishing procedures by hand. An automated process with conventional polishing machines is impossible because of the complex mold insert geometry. The authors will present the development of a new abrasive polishing process for finishing these complex mold geometries to optical quality. The necessary relative velocity in the contact area between polishing pad and workpiece surface is exclusively realized by vibration motions which is an advantage over vibration assisted rotating polishing processes. The absence of rotation of the pad opens up the possibility to machine new types of surface geometries. The specific influence factors of vibration polishing were analyzed and will be presented. The determination of material removal behavior and polishing effect on planar steel samples has shown that the conventional abrasive polishing hypothesis of Preston is applicable to the novel vibration polishing process. No overlaid chemical material removal appears.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call