Abstract
Non-propagating fatigue crack lengths were analytically calculated under stress control conditions using plasticity-induced crack closure analysis with the Dugdale model. In addition, a non-dimensionalization method was applied in terms of the Burgers vector and a monotonic plastic zone size under small-scale yielding conditions, which was validated for various initial crack lengths and material properties. When the yield strength was increased, the non-propagating fatigue crack lengths were found to increase for a short crack and decrease for a long crack. The non-dimensionalization enabled the analytical derivation of a generalized non-propagating fatigue crack length, which can be utilized for fatigue designs. The material property controlling the threshold stress intensity factor range of mechanically and physically short-crack was discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.