Abstract

Feynman path-integral quantum Monte Carlo (QMC) simulations and an analytic many-body approach are used to study the ground state properties of one-dimensional (1D) chains in the theoretical framework of model Hamiltonians of the Hubbard type. The QMC algorithm is employed to derive position-space quantities, while band structure properties are evaluated by combining QMC data with expressions derived in momentum (k) space. Bridging link between both representations is the quasi-chemical approximation (QCA). Electronic charge fluctuations and the fluctuations of the magnetic local moments are studied as a function of the on-site density and correlation strength, which is given by the ratio between two-electron interaction and kinetic hopping. Caused by the non-analytic behaviour of the chemical potential μ = ∂E/∂ (with E denoting the electronic energy), strict 1D systems with an on-site density of 1·0 do not exhibit the properties of a conductor for any non-zero ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.