Abstract

The paper reviews the material requirements of microcrystalline silicon (μc-Si) in terms of the device operation and configuration for thin film solar cells and thin film transistors (TFTs). We investigated the material properties of μc-Si films deposited by using 13.56 MHz plasma-enhanced chemical vapor deposition (PECVD) from a conventional H 2 dilution in SiH 4. Two types of intrinsic μc-Si films deposited at the high pressure narrow electrode gap and the low pressure wide electrode gap were studied for the solar cell absorption layers. The material properties were characterized using dark conductivity, Raman spectroscopy, and transmission electron microscope (TEM) measurements. The μc-Si quality and solar cell performance were mainly determined by microstructure characteristics. Solar cells adopting the optimized μc-Si film demonstrated high stability with no significant changes in solar cell performance after air exposure for six months and subsequent illumination for over 300 h. The results can be explained that low ion bombardment and high atomic hydrogen density under the PECVD condition of the high pressure narrow electrode gap produce high-quality μc-Si films for solar cell application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.