Abstract

This paper deals with prediction of extreme ultraviolet (XUV) laser ablation of lithium fluoride at nanosecond timescales. Material properties of lithium fluoride were determined based on bibliographic survey. These data are necessary for theoretical estimation of surface removal rate in relevance to XUV laser desorption/ablation process. Parameters of XUV radiation pulses generated by the Prague capillary-discharge laser (CDL) desktop system were assumed in this context. Prediction of ablation curve and threshold laser fluence for lithium fluoride was performed employing XUV-ABLATOR code. Quasi-random sampling approach was used for evaluating its predictive capabilities in the means of variance and stability of model outputs in expected range of uncertainties. These results were compared to experimental data observed previously.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.