Abstract

3D printed Titanium alloy is widely used as a material of artificial joints and its mechanical properties is a key factor for improving operation results. Because the elastic modulus of the 3 D printed titanium alloy specimen was related to the size of the metal blank. It is very difficult to identify mechanical parameters by traditional mechanics experiments. In this paper, according to the inverse analysis principle of the parameter estimation, a response surface methodology (RSM) was proposed to identify the mechanical parameters, based on finite element inverse analysis. The finite element models of femoral prosthesis stem were established in line with compression experiments. The material parameters were combined by central composite design (CCD), and the response surface (RS) models were constructed using a quadratic polynomial with cross terms and optimized using a genetic algorithm (GA). Finally, the best mechanical parameter combination of the femoral prosthesis was calculated. The calculated elastic modulus and Poisson's ratio of a 3 D printed titanium alloy femoral prosthesis stem were 109.07 GPa and 0.29, respectively, with the elastic modulus error being very small. The proposed method is effective and can be extended for the identification of mechanical parameters in other 3 D printed models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.