Abstract

SummaryWe present an efficient adjoint‐based framework for computing sensitivities of quantities of interest with respect to material parameters for coupled fluid‐structural acoustic systems with explicit interface coupling. The fluid is modeled using the Helmholtz equation and the structure is modeled using the Navier‐Cauchy equations. Sensitivities are used to drive a gradient based optimization algorithm to solve important problems in structural acoustics, viz noise minimization and vibration isolation. For each problem, we consider two different priors: one where the optimal solution has a smooth variation and another with a bimaterial distribution. These priors are imposed with the help of suitable regularization terms. The effectiveness of this approach is demonstrated on both interior and exterior structural acoustic problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call