Abstract

Smart supercapacitors are a promising energy storage solution due to their high power density, long cycle life, and low-maintenance requirements. Functional polymers (FPs) and inorganic nanomaterials are used in smart supercapacitors because of the favorable mechanical properties (flexibility and stretchability) of FPs and the energy storage properties of inorganic materials. The complementary properties of these materials facilitate commercial applications of smart supercapacitors in flexible smart wearables, displays, and self-generation, as well as energy storage. Here, an overview of strategies for the development of suitable materials for smart supercapacitors is presented, based on recent literature reports. A range of synthetic techniques are discussed and it is concluded that a combination of organic and inorganic hybrid materials is the best option for realizing smart supercapacitors. This perspective facilitates new strategies for the synthesis of hybrid materials, and the development of material technologies for smart energy storage applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.