Abstract
Wave propagation in composite laminated cylindrical microshell was investigated by accounting for simultaneous effects of two influential parameters resulting from the nonlocal and strain gradient effects. The thin shell model was used for modeling the composite laminated cylindrical microshell, and the nonlocal strain gradient theory was employed as well. Classical governing equations were derived from Hamilton’s principle. The results demonstrate that the rigidity of the composite laminated cylindrical microshell in the strain gradient theory is more than that in the classical theory and less than that in the nonlocal theory. Moreover, the effect of fiber angle in layers on phase velocity of the composite laminated cylindrical microshell was investigated, demonstrating that the size parameter, the composite laminated cylindrical microshell thickness, and the circumferential wave number have considerable effects on the phase velocity of the composite laminated cylindrical microshell.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.