Abstract

Lie groupoids and their associated algebroids arise naturally in the study of the constitutive properties of continuous media. Thus, continuum mechanics and differential geometry illuminate each other in a mutual entanglement of theory and applications. Given any material property, such as the elastic energy or an index of refraction, affected by the state of deformation of the material body, one can automatically associate to it a groupoid. Under conditions of differentiability, this material groupoid is a Lie groupoid. Its associated Lie algebroid plays an important role in the determination of the existence of material defects, such as dislocations. This paper presents a rather intuitive treatment of these ideas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.