Abstract

Understanding the material flow in friction stir welding (FSW) is one of the challenging aspects for producing defect free and quality welds. The material flow is majorly governed by the tool shoulder/pin geometries and process conditions. In the present study, concentric circles shoulder shape with various polygonal pin designs are selected, and their influence on material flow and mechanical properties in Al 6082 friction stir welds is addressed. Material flow is studied by inserting the markers before welding and subsequent analysis of deformed marker material by radiography and macrostructure after welding. The outcome shows the welds with square pin design facilitated a constant stable force, and hexagonal pin design facilitated a decreasing behavior of force with reference to welding length/time. The heat input is increasing from triangular pin to hexagonal pin and is maximum for welds with hexagonal pins (973 kJ/mm). Further, welds with hexagonal pins (TCC)HEX tool facilitated higher mechanical properties of strength (187 MPa) and average hardness (79 HV) at the stir zone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call