Abstract

This paper focuses on the design and analysis of a novel material-efficient permanent-magnet (PM) shape for surface-mounted PM (SPM) motors used in automotive actuators. Most of such applications require smooth torque with minimum pulsation for an accurate position control. The proposed PM shape is designed to be sinusoidal and symmetrical in the axial direction for minimizing the amount of rare earth magnets as well as for providing balanced axial electromagnetic force, which turns out to obtain better sinusoidal electromotive force, less cogging torque, and, consequently, smooth electromagnetic torque. The contribution of the novel PM shape to motor characteristics is first estimated by 3-D finite-element method, and all of the simulation results are compared with those of SPM motors with two conventional arched PM shapes: one previously reported sinusoidal PM shape and one step skewed PM shape. Finally, some finite-element analysis results are confirmed by experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.