Abstract

This paper describes the physics reasoning and the engineering development process for the structured material system adopted for the containment system of the Trent 900 engine. This is the Rolls-Royce engine that powers the Airbus A380 double-decker aeroplane, which is on the point of entering service.The fan blade containment casing is the near cylindrical casing that surrounds the fan blades at the front of the engine. The fan blades provide the main part of the thrust of the engine; the power to the fan is provided through a shaft from the turbine. The fan is approximately three meters in diameter, with the tips of the blade travelling at a little over Mach speed. The purpose of the containment system is to catch and contain a blade in the extremely unlikely event of a part or whole blade becoming detached. This is known as a ‘‘Fan Blade Off (FBO)’’ event. The requirement is that no high-energy fragments should escape the containment system; this is essential to prevent damage to other engines or to the fuselage of the aircraft.Traditionally the containment system philosophy has been to provide a sufficiently thick solid metallic skin that the blade cannot penetrate. Obviously, this is heavy. A good choice of metal in this case is a highly ductile steel, which arrests the kinetic energy of the blade through plastic deformation, and possibly, a controlled amount of cracking. This is known as ‘‘hard wall’’ containment. More recently, to reduce weight, containment systems have incorporated a Kevlar fibre wrap. In this case, the thinner metallic wall provides some containment, which is backed up by the stretching of the Kevlar fibres. This is known as ‘‘soft wall’’ containment; but it suffers the disadvantage of requiring a large empty volume in the nacelle in to which to expand.For the Trent 900 engine, there was a requirement to make a substantial weight saving while still adopting a hard wall style of containment system. To achieve this, a hollow structured material system was developed, with much of the kinetic energy arrest provided by the mechanism of crushing. A number of structural elements were included within the containment system to maximise the area of material involved in the arrest and thereby minimise the overall weight.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.