Abstract

Rational design of high‐performance photocatalysts/catalysts is crucial for sustainable development. To achieve this goal, a comprehensive understanding and precise description of structure–performance relationships of photocatalysts/catalysts are highly desirable. While photocatalysis/catalysis involves complex systems and processes, approximate descriptors have been proposed for sorting out simple pictures of complicated structure–performance relationships concerned. In this review, some important descriptors involved in photocatalyst/catalyst design including work function, dipole moment, d‐band center, and Fermi softness are reviewed first with special attention being paid to their working mechanisms and applications. Then strategies of tuning photocatalytic/catalytic performance on the basis of these descriptors are outlined. Finally, challenges and opportunities for photocatalyst/catalyst design based on descriptor control are discussed.This article is categorized under: Structure and Mechanism > Computational Materials Science Structure and Mechanism > Reaction Mechanisms and Catalysis Electronic Structure Theory > Density Functional Theory Software > Quantum Chemistry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.