Abstract

Dual-energy breast CT reconstruction has a potential application that includes separation of microcalcification from healthy breast tissue for assisting early breast cancer detection. To investigate and validate the noise suppression algorithm applied in the decomposition of the simulated breast phantom into microcalcification and healthy breast. The proposed hybrid optimization method (HOM) uses a simultaneous algebraic reconstruction technique (SART) output as a prior image, which is then incorporated into the self-adaptive dictionary learning. This self-adaptive dictionary learning seeks each group of patches to faithfully represent the learned dictionary, and the sparsity and non-local similarity of group patches are used to enforce the image regularization term of the prior image. We simulate a numerical phantom by adding different levels of Gaussian noise to test performance of the proposed method. The mean value of peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and root mean square error (RMSE) for the proposed method are (49.043±1.571), (0.997±0.002), (0.003±0.001) and (51.329±1.998), (0.998±0.002), (0.003±0.001) for 35 kVp and 49 kVp, respectively. The PSNR of the proposed method shows greater improvement over TWIST (5.2%), SART (34.6%), FBP (40.4%) and TWIST (3.7%), SART (39.9%), FBP (50.3%) for 35 kVp and 49 kVp energy images, respectively. For the proposed method, the signal-to-noise ratio (SNR) of decomposed normal breast tissue (NBT) is (22.036±1.535), which exceeded that of TWIST, SART, and FBP by 7.5%, 49.6%, and 96.4%, respectively. The results reveal that the proposed algorithm achieves the best performance in both reconstructed and decomposed images under different levels of noise and the performance is due to the high sparsity and good denoising ability of minimization exploited to solve the convex optimization problem. This study demonstrates the potential of applying dual-energy reconstruction in breast CT to detect and separate clustered MCs from healthy breast tissues without noise amplification. Compared to other competing methods, the proposed algorithm achieves the best noise suppression performance for both reconstructed and decomposed images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call