Abstract
ABSTRACTCollaborative work between Brookhaven and Los Alamos National Laboratories is developing a new type of linear accelerator that uses a high-power, picosecond pulse CO2 laser to irradiate a specialized form of grating with a pitch of 10.6 microns. The electromagnetic field that results can be used to accelerate electrons at field gradients of several GeV/m with potential efficiencies much better than current accelerators. The grating must be conductive to minimize resistive losses, be able to withstand high fields without damage, and requires dimensional tolerances in the sub-micron range. These requirements focus attention on grating material selection, microfabrication methods, and metrological methods used for quality control. At present, several types of gratings have been manufactured by reactive ion etching of fused silica in CHF 3/Ar or etching silicon with KOH/H 2O or ethylenediamine-pyrocatechol solutions. Metrological analysis of the gratings has begun with a Tracor Northern 5700 digital image analyzer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.