Abstract
Analytical methods to interpret the load indentation curves are difficult to formulate and execute directly due to material and geometric nonlinearities as well as complex contact interactions. In the present study, a new approach based on the least squares support vector machines (LS-SVMs) is adopted in the characterization of materials obeying power law strain-hardening. The input data for training and verification of the LS-SVM model are obtained from 1000 large strain–large deformation finite element analyses which were carried out earlier to simulate indentation tests. The proposed LS-SVM model relates the characteristics of the indentation load-displacement curve directly to the elasto-plastic material properties without resorting to any iterative schemes. The tuned LS-SVM model is able to accurately predict the material properties when presented with new sets of load-indentation curves which were not used in the training and verification of the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Modelling and Simulation in Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.