Abstract

During the processing of thermoplastics, polymers are subjected to high stress. As a result of this stress, the polymer chains break, leading to a lower molar mass. This further leads to a lower viscosity of the plastic melt and, eventually, to poorer mechanical properties of the manufactured plastic product. Especially in the context of recycling plastics, this poses a challenge to process technology and product properties. This work aims is to provide a prediction of the material degradation under known stress, so that, for example, a process design that is gentle on the material can be carried out. In order to be able to predict material degradation under a load, a test stand for defined material degradation was designed. The test stand allows for material damaging under a defined temperature, shear rate and residence time. At the same time, the test stand can be used to measure the viscosity, which is used to describe the degradation behavior, since the viscosity correlates with the molar mass. The measured decrease in viscosity under stress can be used to predict material damage under the influencing variables of temperature, shear rate and residence time by means of a test plan and a suitable mathematical description of the measured data. The mathematical description can thus be integrated into simulation environments for plastics processing, so that a simulation of the material degradation can be carried out, if necessary also taking the viscosity reduction into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.