Abstract

Vacancy-type defects in gas cluster ion implanted Si and electroless deposited Cu were studied by monoenergetic positron beams. For Ar gas cluster ion implanted Si, we found that the vacancy-rich region was localized at a depth of 0–13 nm. Two different defect species were found to coexist in the damaged region, and they were identified as divacancy-type defects and vacancy clusters filled with Ar. For electroless deposited Cu films, the major defect species were identified as vacancy complexes (V3-V4) and larger vacancy clusters (~V10). Annealing behaviours of the defects and the relation between the defects and impurities were also discussed. We have demonstrated the efficacy of positron annihilation to aid in the optimization of process parameters for advanced Si LSI processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.