Abstract
Today material is the driving force in architectural design processes run by Computational Design (CD). The architect may lead the design process and its outputs by analysing material type and properties, as well as constraints, at the beginning of the process. This article reviews the state of the art in Material-based Computational Design (MCD) and aims to analyse the role of materials in efficient and sustainable MCD processes. A set of critical projects developed over the past decade have been selected and grouped based on how material is incorporated into the process. In the process, three main categories are identified—namely, Material Performance, Informed Materials and Programming Materials. Based on predefined criteria on efficiency (E) and sustainability (S) in architectural design processes, the projects are analysed to calculate their E + S ratings. The analysis identifies two principal approaches implemented in MCD. One focuses on integrating material properties with other critical parameters—including form, performance and fabrication. The other concerns enhancing material properties by designing new materials. The analysis verifies that MCD generates both efficient and sustainable design solutions. By using CD in architectural design processes, existing materials can be re-interpreted and innovative materials can be produced to achieve new spatial experiences and meanings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.