Abstract
The integration of material attribute estimation (MAE) within augmented reality, virtual reality, and mixed reality telecommunication systems stands as a pivotal domain, evolving rapidly with the advent of the Tactile Internet. This unifying implementation process has the potential for improvements in the realism and interactivity of immersive environments. The interaction between MAE and the haptic Internet could lead to significant advances in haptic feedback systems, enabling more accurate and responsive user experiences. This systematic review is focused on the intersection of MAE and the Tactile Internet, aiming to find an implementation path between these technologies. Motivated by the potential of the haptic Internet to advance telecommunications, we explore its potential to advance the analysis of material attributes within AR, VR, and MR applications. Through an extensive analysis of current research approaches, including machine learning methods, we explore the possibilities of integrating the TI into MAE. By exploiting haptic and visual properties stored in the materials of 3D objects and using them directly during rendering in remote access scenarios, we propose a conceptual framework that combines data capture, visual representation, processing, and communication in virtual environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.