Abstract

GaAs is a wide band gap (1.42 eV) semiconductor that has shown promise as a room temperature operated γ-ray detector. A practical γ-ray detector would be large in volume, hence the resistivity of the material must be high to ensure large depletion volumes and low leakage currents. Commercially available semi-insulating (SI) bulk GaAs is compensated by a balance between native defect deep donors (EL2) and residual dopant impurities. The high concentrations of electrically active deep and shallow levels are believed to contribute to electric field distortions observed in γ-ray detectors fabricated from SI bulk GaAs. Hence, the controlled reduction of native defects and contaminant impurities may yield improved bulk GaAs for γ-ray detectors. Custom grown vertical zone melt (VZM) bulk GaAs is presently under investigation as an alternative material for room temperature operated γ-ray detectors. The VZM technique allows for zone refinement (ZR) and zone leveling (ZL) of the GaAs ingots. Custom growth of the material allows for controlled changes in the bulk crystal, including deliberate reductions in EL2 and impurity concentrations. Comparisons are made to commercial vertical gradient freeze (VGF) and liquid encapsulated Czochralski (LEC) bulk GaAs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.