Abstract
La matemática difusa generaliza los conceptos tradicionales de la matemática utilizando los llamados conjuntos difusos, lo que permite modelar y estudiar de manera más apropiada fenómenos caracterizados por su imprecisión. Estas generalizaciones incluyen conceptos de álgebra, análisis y topología, entre otros. Por otra parte, los complejos cúbicos tienen aplicaciones al procesamiento de imágenes digitales y al estudio de los sistemas dinámicos, pero en la literatura actual no hay una extensión de sus propiedades utilizando conjuntos difusos. En este documento se propone una generalización del concepto de complejo cúbico y de algunas de sus características, tales como realización poliédrica, conexidad, componente conexa y agujero, utilizando conjuntos difusos. Se definen los árboles superior e inferior de un complejo cúbico difuso, los cuales proporcionan información sobre la manera en la que están relacionados sus extremos regionales. También se definen los grupos de homología de estos complejos cúbicos difusos y se demuestra que el rango del 0-grupo de homología de un nivel dado es igual al número de máximos regionales de dicho nivel. Por último, se muestra cómo se le puede asociar un complejo cúbico difuso a una imagen digital bidimensional en tonos de gris para estudiar algunas de sus propiedades topológicas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.