Abstract
Recent advances in high-throughput sequencing have exponentially increased the number of genomic data available for animals (Metazoa) in the last decades, with high-quality chromosome-level genomes being published almost daily. Nevertheless, generating a new genome is not an easy task due to the high cost of genome sequencing, the high complexity of assembly, and the lack of standardized protocols for genome annotation. The lack of consensus in the annotation and publication of genome files hinders research by making researchers lose time in reformatting the files for their purposes but can also reduce the quality of the genetic repertoire for an evolutionary study. Thus, the use of transcriptomes obtained using the same pipeline as a proxy for the genetic content of species remains a valuable resource that is easier to obtain, cheaper, and more comparable than genomes. In a previous study, we presented the Metazoan Assemblies from Transcriptomic Ensembles database (MATEdb), a repository of high-quality transcriptomic and genomic data for the two most diverse animal phyla, Arthropoda and Mollusca. Here, we present the newest version of MATEdb (MATEdb2) that overcomes some of the previous limitations of our database: (i) we include data from all animal phyla where public data are available, and (ii) we provide gene annotations extracted from the original GFF genome files using the same pipeline. In total, we provide proteomes inferred from high-quality transcriptomic or genomic data for almost 1,000 animal species, including the longest isoforms, all isoforms, and functional annotation based on sequence homology and protein language models, as well as the embedding representations of the sequences. We believe this new version of MATEdb will accelerate research on animal phylogenomics while saving thousands of hours of computational work in a plea for open, greener, and collaborative science.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.