Abstract

Reproductive gene evolution is commonly invoked as a source of reproductive isolation during speciation. This possibility has not been adequately explored in the Ascomycota, the most species-rich fungal phylum. The mechanisms of mate-recognition in this group are relatively simple: a “mating type” locus determines reproductive mode and sexual compatibility, and two pheromone/receptor pairs control sexual attraction. However, ascomycete reproductive genes can experience unique and interesting evolutionary forces, which could lead to rapid divergence. In this review, we examine the mechanisms of sexual interaction in ascomycetes and explore current evidence as to whether these mechanisms allow for species-specificity in mate-recognition. We discuss the evolutionary forces that can drive reproductive gene divergence, how these may apply in the world of ascomycetes, and their possible consequences for speciation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.