Abstract
Small-angle neutron scattering (SANS) is a powerful technique for the characterisation of macromolecular structures and interactions. Its main advantage over other solution state approaches is the ability to use D2O/H2O solvent contrast variation to selectively match out specific parts of a multi-component system. While proteins, nucleic acids, and lipids are readily distinguished in this way, it is not possible to locate different parts of a protein–protein system without the introduction of additional contrast by selective deuteration. Here, we describe new methods by which ‘matchout labelled’ proteins can be produced using Escherichia coli and Pichia pastoris expression systems in high cell-density cultures. The method is designed to produce protein that has a scattering length density that is very close to that of 100% D2O, providing clear contrast when used with hydrogenated partner proteins in a complex. This allows the production of a single sample system for which SANS measurements at different solvent contrasts can be used to distinguish and model the hydrogenated component, the deuterated component, and the whole complex. The approach, which has significant cost advantages, has been extensively tested for both types of expression system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.