Abstract

We propose two solution concepts for matchings under preferences: robustness and near stability . The former strengthens while the latter relaxes the classical definition of stability by Gale and Shapley (1962). Informally speaking, robustness requires that a matching must be stable in the classical sense, even if the agents slightly change their preferences. Near stability, however, imposes that a matching must become stable (again, in the classical sense) provided the agents are willing to adjust their preferences a bit. Both of our concepts are quantitative; together they provide means for a fine-grained analysis of the stability of matchings. Moreover, our concepts allow the exploration of tradeoffs between stability and other criteria of social optimality, such as the egalitarian cost and the number of unmatched agents. We investigate the computational complexity of finding matchings that implement certain predefined tradeoffs. We provide a polynomial-time algorithm that, given agent preferences, returns a socially optimal robust matching (if it exists), and we prove that finding a socially optimal and nearly stable matching is computationally hard.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.