Abstract

1. Tutte(10) has given necessary and sufficient conditions in order that a finite graph have a perfect matching. A different proof was given by Gallai(4). Berge(1) (and Ore (7)) generalized Tutte's result by determining the maximum cardinality of a matching in a finite graph. In his original proof Tutte used the method of skew symmetric determinants (or pfaffians) while Gallai and Berge used the much exploited method of alternating paths. Another proof of Berge's theorem, along with an efficient algorithm for constructing a matching of maximum cardinality, was given by Edmonds (2). In another paper (12) Tutte extended his conditions for a perfect matching to locally finite graphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.