Abstract

Matching is a solving process which is crucial in declarative (rule-based) programming languages. In order to apply rules, one has to match the left-hand side of a rule with the term to be rewritten. In several declarative programming languages, programs involve operators that may also satisfy some structural axioms. Therefore, their evaluation mechanism must implement powerful matching algorithms working modulo equational theories. In this paper, we show the existence of an equational theory where matching is decidable (resp. finitary) but matching in presence of additional (free) operators is undecidable (resp. infinitary). The interest of this result is to easily prove the existence of a frontier between matching and matching with free operators.KeywordsNormal FormTransformation RuleFunction SymbolEquational TheoryCombination AlgorithmThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.