Abstract

PurposeRotational speed and load-carrying capacity are two mutual coupling factors which affect high precision and stable operation of a hydrostatic thrust bearing. The purpose of this paper is to study reasonable matching relationship between the rotational speed and the load-carrying capacity.Design/methodology/approachA mathematical model of relationship between the rotational speed and the load-carrying capacity of the hydrostatic bearing with double-rectangle recess is set up on the basis of the tribology theory and the lubrication theory, and the load and rotational speed characteristics of an oil film temperature field and a pressure field in the hydrostatic bearing are analyzed, reasonable matching relationship between the rotational speed and the load-carrying capacity is deduced and a verification experiment is conducted.FindingsBy increasing the rotational speed, the oil film temperature increases, the average pressure decreases and the load-carrying capacity decreases. By increasing the load-carrying capacity, the oil film temperature and the average pressure increases and the rotational speed decreases; corresponding certain reasonable matching values are available.Originality/valueThe load-carrying capacity can be increased and the rotational speed improved by means of reducing the friction area of the oil recess by using low-viscosity lubricating oil and adding more oil film clearance; but, the stiffness of the hydrostatic bearing decreases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call