Abstract

We propose a new error measure for matching pixels that is based on co-occurrence statistics. The measure relies on a co-occurrence matrix that counts the number of times pairs of pixel values co-occur within a window. The error incurred by matching a pair of pixels is inversely proportional to the probability that their values co-occur together, and not their color difference. This measure also works with features other than color, e.g. deep features. We show that this improves the state-of-the-art performance of template matching on standard benchmarks. We then propose an embedding scheme that maps the input image to an embedded image such that the Euclidean distance between pixel values in the embedded space resembles the co-occurrence statistics in the original space. This lets us run existing vision algorithms on the embedded images and enjoy the power of co-occurrence statistics for free. We demonstrate this on two algorithms, the Lucas-Kanade image registration and the Kernelized Correlation Filter (KCF) tracker. Experiments show that performance of each algorithm improves by about 10%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.