Abstract
High resolution synthetic aperture radar (SAR) satellites like TerraSAR-X are capable of acquiring images exhibiting an absolute geolocation accuracy within a few centimeters, mainly because of the availability of precise orbit information and by compensating range delay errors due to atmospheric conditions. In contrast, satellite images from optical missions generally exhibit comparably low geolocation accuracies because of the propagation of errors in angular measurements over large distances. However, a variety of remote sensing applications, such as change detection, surface movement monitoring or ice flow measurements, require precisely geo-referenced and co-registered satellite images. By using Ground Control Points (GCPs) derived from TerraSAR-X, the absolute geolocation accuracy of optical satellite images can be improved. For this purpose, the corresponding matching points in the optical images need to be localized. In this paper, a deep learning based approach is investigated for an automated matching of SAR-derived GCPs to optical image elements. Therefore, a convolutional neural network is pretrained with medium resolution Sentinel-1 and Sentinel-2 imagery and fine-tuned on precisely co-registered TerraSAR-X and Pléiades training image pairs to learn a common descriptor representation. By using these descriptors, the similarity of SAR and optical image patches can be calculated. This similarity metric is then used in a sliding window approach to identify the matching points in the optical reference image. Subsequently, the derived points can be utilized for co-registration of the underlying images. The network is evaluated over nine study areas showing airports and their rural surroundings from several different countries around the world. The results show that based on TerraSAR-X-derived GCPs, corresponding points in the optical image can automatically and reliably be identified with a pixel-level localization accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ISPRS Journal of Photogrammetry and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.